Limbic thalamic lesions, appetitively motivated discrimination learning, and training-induced neuronal activity in rabbits.
نویسندگان
چکیده
A substantial literature implicates the anterior and mediodorsal (limbic) thalamic nuclei and the reciprocally interconnected areas of cingulate cortex in learning, memory, and attentional processes. Previous studies have shown that limbic thalamic lesions severely impair discriminative avoidance learning and that they block development of training-induced neuronal activity in the cingulate cortex. The present study investigated the possibility that the limbic thalamus and cingulate cortex are involved in reward-based discriminative approach learning, wherein head-extension responses yielding oral contact with a drinking spout that was inserted into the conditioning chamber after a positive conditional stimulus (CS+) were reinforced with a water reward but responses to the spout after a negative conditional stimulus (CS-) were not reinforced. In this task, the rabbits learned primarily to omit their prepotent responses to the spout on CS- trials. Acquisition was severely impaired in rabbits given limbic thalamic lesions before training. As during avoidance learning, posterior cingulate cortical neurons of control rabbits developed learning-related neuronal responses to task-relevant stimuli, but this activity was severely attenuated in rabbits with lesions. These results support a general involvement of the cingulothalamic circuitry in instrumental approach and avoidance learning. The fact that learning consisted of response omission indicated that the cingulothalamic role is not limited to acquisition or production of active behavioral responses, such as locomotion. It is proposed that cingulothalamic neurons mediate associative attention, wherein enhanced neuronal responses to stimuli associated with reinforcement facilitate the selection and production of task-relevant responses.
منابع مشابه
Context-specific multi-site cingulate cortical, limbic thalamic, and hippocampal neuronal activity during concurrent discriminative approach and avoidance training in rabbits.
This study assessed the context specificity of learning-related neuronal activity: whether the same physical stimuli would elicit different neuronal responses depending on the learning situation. Neuronal activity was recorded simultaneously in six limbic areas as rabbits learned to approach a spout for water reinforcement after a tone (CS+) and to ignore the spout after a different tone (CS-)....
متن کاملNeurobiology of Learning and Memory
The amygdala is critically involved in discriminative avoidance learning. Large lesions of the amygdala block discriminative avoidance learning and abolish cingulothalamic training-induced neuronal activity. These results indicated that amygdalar processing is critical for cingulothalamic plasticity. The larger lesions did not allow differentiation of the specific functioning of various amygdal...
متن کاملMedial geniculate lesions block amygdalar and cingulothalamic learning-related neuronal activity.
This study assessed the role of the thalamic medial geniculate (MG) nucleus in discriminative avoidance learning, wherein rabbits acquire a locomotory response to a tone [conditioned stimulus (CS)+] to avoid a foot shock, and they learn to ignore a different tone (CS-) not predictive of foot shock. Limbic (anterior and medial dorsal) thalamic, cingulate cortical, or amygdalar lesions severely i...
متن کاملAmygdalar lesions block discriminative avoidance learning and cingulothalamic training-induced neuronal plasticity in rabbits.
Learning to fear dangerous situations requires the participation of neurons of the amygdala. Here it is shown that amygdalar neurons are also involved in learning to avoid dangerous situations. Amygdalar lesions severely impaired the acquisition of acoustically cued, discriminative instrumental avoidance behavior of rabbits. In addition, the development of anterior cingulate cortical and medial...
متن کاملMamillothalamic tract transection blocks anterior thalamic training-induced neuronal plasticity and impairs discriminative offidance behavior in rabbits.
Rabbits with bilateral transecting lesions of the mamillothalamic tract, control (tract-sparing and sham) lesions, or no lesions, and chronic, fixed-position anterior ventral (AV) and medial dorsal (MD) thalamic and posterodorsal subicular complex unit recording electrodes were trained to step in an activity wheel in response to a 0.5 sec tone (CS+) in order to avoid a brief foot shock. The rab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002